
Dementia is a general term referring to several neurological disorders that result in cognitive impairment. More specifically, dementia is characterized by a decline one or more of the following cognitive domains: learning and memory, language, executive function, complex attention, perceptual-motor skill, and social cognition(1). Deficits must be significant enough to compromise activities of daily living and independence. It is important to mention that, while the most common risk factor for dementia is age, it is not a normal part of aging(1).
There are multiple types of dementia. The most common type of dementia is Alzheimer’s Disease (AD), a neurodegenerative disease that is responsible for 60% – 80% of dementia cases(1, 2). The second most common cause of dementia is vascular dementia (VD), which is a progressive neurological disease. Other types dementia includes frontotemporal dementia, Lewy body dementia (neurodegenerative) and mixed dementia (progressive)(1, 2).
Hyperbaric oxygen therapy (HBOT) has research-backed potential to reduce the level of cognitive decline and neurological damage associated with dementia(3).
Decreased cerebral perfusion and oxygen levels are two of the potential causes of Alzheimer’s disease (AD). HBOT combats these issues by significantly increasing blood flow and oxygen concentration in the brain(4, 5). HBOT also decreases neuroinflammation, a main issue in AD(6, 7).
In terms of vascular dementia (VD), one mechanism by which HBOT can protect against cognitive decline is by increasing a neuroprotective peptide called Humanin. Humanin levels have been shown to decrease in AD and normal aging, while higher serum levels of Humanin are positively correlated with better cognitive function(8, 9). A meta-analysis that included 1,975 total VD patients concluded that HBOT can be a safe, effective adjunct treatment for vascular dementia(10).
For detailed information on HBOT and Alzheimer’s disease, see our Alzheimer’s page.
-
Decreased Inflammation
Hyperbaric oxygen therapy reduces systemic inflammation by increasing anti-inflammatory gene expression and decreasing proinflammatory genes.
-
New Blood Vessel Formation
Hyperbaric oxygen therapy stimulates the formation of new blood vessels, healing injured tissues that were unable to get nutrients and oxygen.
-
Increased Stem Cell Activity
Hyperbaric oxygen therapy mobilizes stem progenitor cells (SPCs) from the bone marrow, creating the opportunity for tissue regeneration.
Relevant Videos
Learn from some of the best minds on the subject of HBOT
“What Is Dementia? Symptoms, Types, and Diagnosis.” National Institute on Aging, http://www.nia.nih.gov/health/what-dementia-symptoms-types-and-diagnosis. Accessed 26 Oct. 2020.
“Changes in the Brain: 10 Types of Dementia.” Healthline, 5 Jan. 2017, https://www.healthline.com/health/types-dementia.
Carney, Amy Y. “Hyperbaric Oxygen Therapy: An Introduction.” Critical Care Nursing Quarterly, vol. 36, no. 3, Sept. 2013, pp. 274–279. journals.lww.com, doi:10.1097/CNQ.0b013e318294e936.
Tal, Sigal, et al. “Hyperbaric Oxygen May Induce Angiogenesis in Patients Suffering from Prolonged Post-Concussion Syndrome Due to Traumatic Brain Injury.” Restorative Neurology and Neuroscience, vol. 33, no. 6, IOS Press, Jan. 2015, pp. 943–51. content.iospress.com, doi:10.3233/RNN-150585.
Choudhury, Ryan. “Hypoxia and Hyperbaric Oxygen Therapy: A Review.” International Journal of General Medicine, vol. Volume 11, Nov. 2018, pp. 431–42. ResearchGate, doi:10.2147/IJGM.S172460.
Shapira, Ronit, Beka Solomon, Shai Efrati, Dan Frenkel, and Uri Ashery. “Hyperbaric Oxygen Therapy Ameliorates Pathophysiology of 3xTg-AD Mouse Model by Attenuating Neuroinflammation.” Neurobiology of Aging 62 (2018): 105–19. https://doi.org/10.1016/j.neurobiolaging.2017.10.007.
Thom, Stephen R. “Hyperbaric Oxygen – Its Mechanisms and Efficacy.” Plastic and Reconstructive Surgery, vol. 127, no. Suppl 1, Jan. 2011, pp. 131S-141S. PubMed Central, doi:10.1097/PRS.0b013e3181fbe2bf.
Lee, Changhan, et al. “Humanin: A Harbinger of Mitochondrial-Derived Peptides?” Trends in Endocrinology & Metabolism, vol. 24, no. 5, May 2013, pp. 222–28. ScienceDirect, doi:10.1016/j.tem.2013.01.005.
Xu, Yuzhen, et al. “Protective Effect of Hyperbaric Oxygen Therapy on Cognitive Function in Patients with Vascular Dementia.” Cell Transplantation, vol. 28, no. 8, SAGE Publications Inc, Aug. 2019, pp. 1071–75. SAGE Journals, doi:10.1177/0963689719853540.
You, Q, Li, L, Xiong, SQ, Yan, YF, Li, D, Yan, NN, Chen, HP, Liu, YP. Meta-Analysis on the Efficacy and Safety of Hyperbaric Oxygen as Adjunctive Therapy for Vascular Dementia. Front Aging Neurosci. 2019;11:86.